Part Number Hot Search : 
STBP09B X058C 06031 CQC32E3 ISL97631 150MC EC601 C51440
Product Description
Full Text Search
 

To Download U2514B Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 U2514B
AM/FM Receiver for Digital Tuning with FM-Stereo Decoder
Description
The U2514B is an integrated bipolar radio suitable for digital tuning systems. It contains a FM front end with pre-amplifier and FM-stereo decoder as well as a complete AM receiver and demodulator. Stop-signal generation is implemented for FM and AM mode. This circuit is designed for use in small radios, power packs and multimedia applications
Features
D FM wideband AGC D LO-buffer for digital tuning D Integrated stop signal generation with true
AM/ FM discriminators
D High cut D Mute function D Pilot canceller D Supply voltage range 3 to 12 V D Package: SSO28
D Adjustable stop signal sensitivity D Automatic stereo-mono-blend
Block Diagram
FMOSCE FMOSCB FMRF 6 28 FMIN 2 FMAGC 8 OSCOUT GNDRF 4 AM FM stop signal detect 20 Pilot PLL 23 CTRLB 27 1 AMIN AM front end AM IF + demodulator Control unit VS V Ref GND 16 7 AMOSC IFOUT 10 12 FMIFIN AMIFIN 13 17 METER 9 22 26 AMFM 14 VREF
12305
AFSM FMDET 15 11 MPXOUT 25 MPXIN 24 Matrix decoder + HCC 18 OUTR 19 OUTL 21 LPF
5
3
FM front end
FM IF + demodulator
CERES
CTRLA AMSADJ
Figure 1.
TELEFUNKEN Semiconductors Rev. A2, 04-Nov-96
1 (15)
Preliminary Information
U2514B
Pin Description
Pin 1 2 3 4 5 6 7 8 9 FMOSCB 6 AMOSC 7 OSCOUT 8 AMSADJ 9 IFOUT 10 AFSM 11 23 CTRLB 22 CTRLA 21 LPF 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Function AM antenna input FM-AGC time constant FM RF tank Ground RF FM oscillator emitter FM oscillator basis AM oscillator Buffered AM/FM oscillator output AMSADJ Current-input for AM stop signal adjust IFOUT AM/FM IF output AFSM AF smoothing voltage FMIFIN FM IF amplifier input AMIFIN AM IF amplifier input VREF Reference voltage FMDET FM discriminator output GND Ground METER Fieldstrength voltage output OUTR AF output right OUTL AF output left CERES Resonator 456 kHz LPF Low pass filter for Pilot-PLL CTRLA Control input for mute, search mode and search sensitivity CTRLB Control input for forced mono, control output for stop function and stereo information MPXIN Stereo decoder MPX input MPXOUT AM/FM MPX output AMFM AM/FM switch and pilot canceller time constant VS Supply voltage FMIN FM antenna input Symbol AMIN FMAGC FMRF GNDRF FMOSCE FMOSCB AMOSC OSCOUT
AMIN 1 FMAGC 2 FMRF GNDRF FMOSCE 3 4 5
28 FMIN 27 VS 26 AMFM 25 MPXOUT 24 MPXIN
20 CERES 19 18 17 16 15
10547
OUTL OUTR METER GND FMDET
FMIFIN 12 AMIFIN 13 VREF 14
24 25 26 27 28
Figure 2. Pinning
Ordering and Package Information
Extended Type Number U2514B-AFN U2514B-AFNG3 Package SSO28 SSO28 Remarks Taping according to ICE-286-3
2 (15)
Preliminary Information
TELEFUNKEN Semiconductors Rev. A2, 04-Nov-96
U2514B
Pin Description
FMIN, FMAGC, FMRF FMOSCE, FMOSCB
FMOSCB 3
VREF
FMRF
MIXER
6 FMOSCE 5 FMAGC 1.2 k
FMON
T1
T2 2
I AGC
GNDRF
Figure 4.
12415
FMIN 28
1.5 k
FMON
GNDRF
12414
Figure 3.
The FM local oscillator consists of a transistor in grounded collector configuration. The negative resistance at the base of the transistor is generated by an external capacitor connected between emitter FMOSCE (Pin 5) and GNDRF (Pin 4) An other external capacitor is connected between base FMOSCB (Pin 6) and emitter FMOSCE (Pin 5) which increases the resistance at the emitter and leads to a higher oscillator swing. The negative resistance at FMOSCB is approximately 250 W. Therefore, the resonant LO tank resistance of approximately 5 kW (depends on Q-factor of the coil) is transformed to this magnitude via a capacitor.
OSCOUT
8 The FM pre-amplifier input FMIN (Pin 28) consists of a transistor grounded base circuit (T2) which provides excellent noise performance and large signal behavior. It is recommended to connect a source impedance of 100 W in order to achieve optimal performance. The dc current through the amplifying transitor is reduced by the internal AGC. This means in the case of large input signals, the input ac current is bypassed via the wideband AGC transistor T1. A capacitor is connected between FMAGC (Pin 2) and GNDRF (Pin 4). It shortens the transistor base to GNDRF and it also serves for smoothing of the AGC voltage. A tuned RF circuit is connected between FMRF (Pin 3) and VS (Pin 27). The amplified RF signal is fed internally to the mixer input. OSCOUT
FM
AM
12416
Figure 5.
A resistor is connected between OSCOUT (Pin 8) and VREF (Pin 14). It determines the amplitude of oscillator voltage which is fed to the PLL circuit. The TEMIC PLL familiy U428xBM is recommended because it offers high signal to noise ratio and low current consumption.
TELEFUNKEN Semiconductors Rev. A2, 04-Nov-96
3 (15)
Preliminary Information
U2514B
AMIN
VREF
AMSADJ
12418
9
AMSADJ
AMIN 1
GND I AGC GNDRF
Figure 6. Figure 8.
12417
The AM antenna coil is connected between AMIN (Pin 1) and VREF (Pin 14). In order to ensure that the AGC operates correctly, a coil impedance of approximately 25 kW is necessary.
AMOSC
7 AMOSC
The ceramic resonator of the stereo decoder PLL circuit is used as a stop signal detector for AM signals. For this purpose, the parallel resonance frequency of the resonator, which is unloaded about 456 kHz, is reduced by an internal load capacitor down to 455 kHz. Therefore, the AM IF must be 455 kHz. The internal loading capacitor is defined by the current through AMSADJ (Pin 9) to GND. An external resistor is connected between AMSADJ (Pin 9) and GND. It allows the alignment of the stop signal center frequency. The width of the stop window is typicaly 800 Hz. If AM searchmode is not activated, the pin is internally pulled to ground.
VREF
IFOUT
6k
AMON FM
12419
10
IFOUT
AM
GNDRF
Figure 7. Figure 9.
12420
The AM oscillator has to be loaded by an external tank referred to VREF (Pin 14). If reduction of the oscillator voltage is necessary, this may be achieved by a parallel resistor.
The IF output (IFOUT Pin 10) of both the FM and the AM mixer has to be loaded into external IF-tank circuits refered to VREF (Pin 14). Q-factor of IF coils must not be lower than 50.
4 (15)
Preliminary Information
TELEFUNKEN Semiconductors Rev. A2, 04-Nov-96
U2514B
AMIFIN FMDET
VREF VREF
3.3 k 13 AMIFIN
12421
15 FMDET 150 mA
12422
Figure 10. Figure 12.
The input impedance of the AM IF amplifier is 3.3 kW according to the required impedance of most ceramic filters. The input refers to VREF (Pin 14).
The discriminator allows the connection of a ceramic resonator or LC tank. A minimization of THD and adjustment of center frequency versus temperature can only be achieved by using a LC tank. This performs a temperature independent stop signal.
FMIFIN
AFSM
25 40 mA 100 k 12 MPXOUT 11 AFSM
FMIFIN
12423
GND
Figure 13. Figure 11.
12424
The input impedance of the FM IF amplifier is 330 W according to the required impedance of most FM ceramic filters. The input referes to GND (Pin 16).
A capacitor is connected between AFSM (Pin 11) and GND for smoothing of the FM-AF. This is necessary to generate a modulation independent stop signal. (Because the deviation of the FM signal (75 kHz) can be greater than the stop signal window (25 kHz)). In the AM-search-mode, the external capacitor smoothes the demodulated AM-IF-signal.
TELEFUNKEN Semiconductors Rev. A2, 04-Nov-96
5 (15)
Preliminary Information
U2514B
METER
VREF
12425
CTRLB
VS
30 k 23
1.2 V
CTRLB
FM AM
12447
17
METER
GND
Figure 16.
Figure 14.
This pin is driven by a current corresponding to the level of the FM or AM-IF-signal. The required external load consists of a resistor (100 to 150 kW) in parallel with an external capacitor (e.g., 10 mF necessary to achieve a good THD in AM mode and to supress AF influence in FM mode). The voltage at this pin controls the high cut and mono/ stereo blend function in the case of reception mode. These functions can be affected by the designer by choosing different values of the load resistor.
The signal at the output CTRLB (Pin 23) shows stereo or mono reception. The stereo reception is indicated if the voltage is higher than 1.2 V, otherwise it is mono. Furthermore there is the possibility to force the receiver circuit to mono by applying an external control voltage <0.8 V at CTRLB. If the search mode is selected, the low active stop signal appears at CTRLB. If the output CTRLB is connected directly to the I/O-port of the microcontroller, the high level of CTRLB has to be adapted by connecting a resistor between CTRLB and GND.
VREF
A internal voltage regulator generates a stable reference voltage of 2.4 V which is needed for all function blocks of the IC. An external capacitor has to be connected to GND in order to achieve stability and noise suppression.
CTRLA
22 CTRLA
12448
AMFM
GND
Figure 15.
26 AMFM
12454
The reception mode, search mode, as well as mute function and search sensitivity can be selected by applying a control voltage at CTRLA (Pin 22). If the control voltage is higher than 0.8 V, the receiver circuit is in the reception mode, otherwise it is in search mode. When reducing the control voltage between 1.3 and 0.8 V, the AF level output at OUTR, OUTL (Pin 18, 19) is reduced (mute function). In the search mode (0.7 to 0 V), the voltage size determines the degree of the search sensitivity.
Figure 17.
By applying a low voltage (<1.1 V) at AMFM (Pin 26), the receiver circuit is switched to AM mode. If Pin AMFM is open, the FM mode is selected. This switching function can easily be performed by a microcontroller with "open drain" I/O-ports. A capacitor has to be connected between AMFM and GND for FM mode operation. It serves for smoothing the control voltage of the pilot canceller.
6 (15)
Preliminary Information
TELEFUNKEN Semiconductors Rev. A2, 04-Nov-96
U2514B
CERES MPXIN
24
VREF
10 k
MPXIN
20 CERES 50 k
12452
60 k
Figure 20.
GND
12449
The MPX signal is applied to MPXIN (Pin 24). It is fed to the stereo decoder. The input resistance into Pin 24 is approximately 10 kW. It is recommended to align the channel separation by an RC network between MPXIN and MPXOUT (Pin 25) due to the tolerances in group delay of the IF filter.
Figure 18.
MPXOUT
VREF
A ceramic resonator of 456 kHz parallel resonance frequency (at 30 pF chip internal load capacitance) is connected between CRES (Pin 20) and GND (necessary for the pilot regeneration). It should be mounted very close to Pin 20 in order to avoid spurios radiation. In the AM (V26 < 1.1 V) search (V22 < 0.8 V) mode, the resonator is used for stop signal generation. The parallel resonance frequency is then reduced down to 455 kHz by adjusting the current into Pin 9 AMSADJ.
25 MPXOUT
GND
Figure 21.
12451
LPF
25 k
VREF
In order to drive both the compensation network to MPXIN (Pin 24) and an optional RDS decoder, the MPXOUT (Pin 25) has a low output impedance. The dc level is 1.2 V in FM mode (depending on the discriminator coil alignment) and 0.7 to 1.5 V in AM mode (depending on the signal level).
21 LPF
OUTR/OUTL
VREF
18,19
12450
OUTL OUTR
Figure 19. Figure 22.
12453
A PLL circuit is used for the pilot regeneration of the stereo decoder. Therefore, a loopfilter consisting of an RC network is connected between LPF (Pin 21) and GND. TELEFUNKEN Semiconductors Rev. A2, 04-Nov-96
The open collector output of OUTR/OUTL (Pin 18/19) requires an external resistor of about 4.7 kW to ground. The de-emphasis may be achieved by an additional parallel capacitor. 7 (15)
Preliminary Information
U2514B
Functional Description
FM
The antenna signal is fed via a tuned RF-circuit to the integrated pre-stage which consists of a transistor grounded base circuit. To protect the prestage against overload, an automatic gain control (AGC) is included on the chip. Additional there is the possibility to extend the AGC control range by use of an external pin diode. For economic applications a hybrid-band pass filter can be used instead of a tuned RF-circuit. A tuned RF circuit on the collector is necessary for amplifying and filtering of the FM signal which is fed internally to the mixer. It consists of a double balanced Gilbert Cell. The LO signal is generated by an integrated oscillator. The buffered LO signal is used to drive a PLL. The IF-signal (10.7 MHz) is coupled out at the mixers output and fed via a ceramic filter to the demodulator. The demodulated AF signal is available at MPXOUT.
Search Mode
The search-mode is selected by applying a control voltage less than 0.7 V at pin CTRLA.
50 40 VANT ( dB m V ) 30 20 10 0 0
12591
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
VCTRLA ( V )
AM
Figure 24.
The antenna signal is fed directly to the mixer. In order to ensure the level control which is necessary in the case of large signals, the generator resistance has to be higher than 25 kW. The LO signal is generated by an integrated oscillator. The buffered LO signal is used to drive the PLL. If the AM-search mode is required, the IF must be 455 kHz. The IF output signal is fed via a ceramic filter to the demodulator. The demodulated AF signal is available at MPXOUT.
The search sensitivity can be chosen by varying of the control voltage in the range of 0 to 0.7 V. If the control voltage is 0 V, the highest sensitivity is achieved.
Reception Mode
In the reception-mode there is a possibility for muting by varying the control voltage in the range of 1.3 to 0.8 V. If the control voltage is 0.8 V, the highest mute depth is achieved.
CTRLA
By applying a control voltage at pin CTRLA the mode of the receiver can be selected.
Mode
12593
10 0 VOUTL, OUTR ( dB ) -10 -20 -30 -40 -50
Reception Mute
Search VCTRLA 0.8 V 1.3 V VRef
12690
0
0.4
0.8
1.2
1.6
2.0
VCTRLA ( V )
Figure 23.
Figure 25.
8 (15)
Preliminary Information
TELEFUNKEN Semiconductors Rev. A2, 04-Nov-96
U2514B
CTRLB
The output CTRLB indicates whether the receiver is working in mono or stereo mode. If a control voltage less than 0.8 V is applied at CTRLB, the receiver is forced to mono.
Mode
12594
VCTRLB VS
12592
Stereo
t STOP
Mono VCTRLB 1.2 V VS
Figure 27.
Figure 26.
In the search mode (VCTRLA < 0.7 V), the internally generated stop signal is available at CTRLB as low active signal.
Absolute Maximum Values
Reference point Pin 16 and 4, unless otherwise specified Parameters Supply voltage Power dissipation External reference current to GND Junction temperature Storage temperature Ambient temperature Electrostatic handling Symbol VS P ILoad Tj Tstg Tamb VESD Value 12 750 3 Unit V mW mA C C C V
)125 *25 to )125 *30 to )85
2000
Thermal Resistance
Parameters Junction ambient when soldered to PCB Symbol RthJA Value tbd. Unit K/W
TELEFUNKEN Semiconductors Rev. A2, 04-Nov-96
9 (15)
Preliminary Information
U2514B
Electrical Characteristics
VS = 9 V, Tamb =)25C; reference point Pins 4 or 16, unless otherwise specified Parameters DC supply Supply voltage range Supply current Reference voltage CTRLA Input voltage Search mode Reception mode Mute function CTRLB Output voltage Mono Stereo Stop signal High Low Stop window (FM) Stop window (AM) Input voltage Forced mono AMFM Input voltage AM FM OSCOUT Output voltage AM FM DC-current (FM) METER Starting point meter (FM) Slope of meter (FM) Usable meter range (FM) DC-output voltage (AM) Test Conditions / Pins Pin 27 Pin 27 Pin 14 Pin 22 Symbol VS IS VRef VCTRLA 0 0.8 0.8 Reception mode VCTRLA > 0.8 V Pin 23 Search mode VCTRLA < 0.8 V VCTRLB 0 1.2 VCTRLB 1.5 0 f f VCTRLB 0 20 1 0.8 V Pin 26 open Pin 8 fLO = 110 MHz, unloaded IOSCOUT Pin 17 Pin 17 Pin 17 See AM test circuit, Pin 17 VRF = 0 dBmV VRF = 40 dBmV VRF = 100 dBmV R17 = 150 kW vstart vslope VMETER 0.05 0.7 1.8 V V V VOSCOUT 120 150 0.7 5 0.04 48 mVrms mVrms mA VAMFM 0 1.1 V VS 0.6 V V kHz kHz 1.2 VS V V 0.7 VRef 1.3 V V V Min. 3.0 2.3 8 2.4 Typ. Max. 12.0 2.5 Unit V mA V
fcenter = 455 kHz adjusted at AMSADJ
mV
V/dB dB
10 (15)
Preliminary Information
TELEFUNKEN Semiconductors Rev. A2, 04-Nov-96
U2514B
Parameters MPXOUT Output voltage (AM) Test Conditions / Pins Symbol Min. Typ. Max. Unit See AM test circuit fRF =1 MHz, m = 0.3,fmod = 1 kHz, Rgen = 25 kW, VCTRLA = 1.7 V, VRF = 20 dBmV VMPXOUT 35 VRF = 40 dBmV 54 VRF = 100 dBmV 66 VRF = 100 dBmV d 0.7 VRF = 40 dBmV (S+N)/N 27 VRF = 100 dBmV 47 (S+N)/N = 26 dB 38 f0 = 98 MHz, 4 deviation = 75 kHz, without de-emphasis (S+N)/N = 26 dB Pin 24 RMPXIN VMPXIN VOUT 10 900 110 Pin 25 mVrms mVrms mVrms % dB dB dBmV
Total distortion Signal plus noise-to-noise Sensitivity (AM) Sensitivity (FM)
mV
MPXIN Input resistance Input voltage OUTL, OUTR AF output voltage
kW mVpp mVrms
fmod = 1 kHz, VFMIN = 1 mV, fFMIN = 97 MHz Pin 18/19 Output current Muting attenuation Channel separation Pilot signal suppression CERES PLL oscillator frequency Iout
Df = 75 kHz,
a19kHz
fmod = 1 kHz, Pilot Df = 6.7 kHz VFMIN = 1 mV, fFMIN = 97 MHz Pin 20
aM a
15 40 26 28 456
mA
dB dB dB
Df = 75 kHz,
fCERES
kHz
FMRF DC-current Voltage gain preamplifier AGC threshold IFOUT DC-current Conversion gain FMIFIN Input resistance
Pin 3 See FM test circuit 20 log (vFMRF/v0) 3 dB compression at Pin 3 Pin 10 log (vIFOUT/vFMRF) Pin 12
IFMRF gFMRF v0AGC IIFOUT gc rFMIFIN
1 16 5 0.4 20 330
mA dB mV mA dB
20
W
TELEFUNKEN Semiconductors Rev. A2, 04-Nov-96
11 (15)
Preliminary Information
U2514B
12 (15)
VS GND GND VREF OUTR OUTL CTRLB CTRLA METER MPXOUT OSCOUT AM/FM 5.6k W R 10 R7 10nF C 15 4.7nF 1 R8 1 mF 3 5.1kW 150k W L2 6.8k W R 11 R 12 C 16 100pF 5.1k W C 12 R6 10nF R3 3.9k W 456kHz 20 19 18 17 16 15 27 26 25 24 23 22 21 CSB 456 F10 C 14 100 W 470nF S1 LED1 C 30 S3 10nF AM FM C6 100nF 100 pF R P1 C5 C8 BC237 Q1 R5 150k W 100nF C7 C 10 C 11 C 13 2.2nF 100nF 4 L8 6 28 C4 10 m F 50k W
GND
ANT
VTUNE FM
VTUNE AM
C1
3.9pF
CD8
1
3
R1
2
3
56k W
1
BB814
2
U2514B
R2 L1 100nF C 19 C 23 10pF 3 3 BB814 1 R 15 2 L4 1 1 2.2nF 56k W C T2 C 24 430pF C 31 15pF 15pF 3 2 1 6 L5 4 R 16 C 20 CD4 BB814 10kW 2 3 C 32 L3 3 3.9pF R 18 1 2.2nF 10pF 22pF C3 56k W CD3 R 14 C 18 C 22 C 21
CD1 KV1551A1
1 4 8 7
2
3
5
6
9 R 19
10 C 28 10k W R P3 100k W 100nF
11
12
13
14
Figure 28. Application circuit
470 W 3 100 pF 2 1 4
560kW
C2
C T1
10.7MHz
455kHz
C 29 100nF
15nF
15pF
10pF
Preliminary Information
L6 6 100 pF 1 2 3 6 L7 4 CD5 R 17 100kW
R 13
56k W
C 17 10nF
TELEFUNKEN Semiconductors Rev. A2, 04-Nov-96
12612
C 25
100 m F
VS
GND GND
GND VREF OUTR OUTL CTRLB CTRLA METER MPXOUT OSCOUT AM/FM 5.6k W R 10 R7 10nF C 15 4.7nF 1 R8 1 mF 5.1kW 150k W 3 L2 6.8k W R 11 R 12 C 16 100pF 5.1k W C 12 R6 10nF R3 3.9k W 456kHz 20 19 18 17 16 15 27 26 25 24 23 22 21 CSB 456 F10 C 14 100 W 470nF S1 LED1 C 30 S3 10nF AM FM C6 100nF 100 pF R P1 C5 C8 BC237 Q1 R5 150k W 100nF C7 C 10 C 11 C 13
ANT
VTUNE FM
VTUNE AM
TELEFUNKEN Semiconductors Rev. A2, 04-Nov-96
10 m F 100nF 50k W 28
BPF
MB&L
U2514B
R2 L1 100nF C 19 C 23 10pF 3 3 BB814 1 R 15 2 2.2nF 56k W C T2 C 24 430pF C 31 15pF 15pF 3 2 1 6 L5 4 R 16 1 C 20 CD4 BB814 10kW 2 3 L4 1 C 32 L3 3 3.9pF R 18 1 2.2nF 10pF 22pF C3 56k W CD3 R 14 C 18 C 22 C 21
CD1 KV1551A1
1 4 8 7
2
3
5
6
9 R 19
10 C 28 10k W R P3 100k W 100nF
11
12
13
14
560kW
C2
C T1
10.7MHz 470 W
455kHz
C 29 100nF 3 100 pF 2 1 4 L6 6 10nF
Figure 29. Application circuit (upgraded)
15nF
15pF
10pF
Preliminary Information
100 pF 1 2 3 6 L7 4 CD5 R 17 100kW
R 13
56k W
C 17
U2514B
12612
C 25
100 m F
13 (15)
U2514B
Dimensions in mm
Package: SSO28
9.25 8.75 7.5 7.3
12.7 12.9
2.35 0.30 0.80 10.4 0.25 0.25 0.10 10.50 10.20
technical drawings according to DIN specifications
1
14 (15)
Preliminary Information
TELEFUNKEN Semiconductors Rev. A2, 04-Nov-96
U2514B
Ozone Depleting Substances Policy Statement
It is the policy of TEMIC TELEFUNKEN microelectronic GmbH to 1. Meet all present and future national and international statutory requirements. 2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment. It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances ( ODSs). The Montreal Protocol ( 1987) and its London Amendments ( 1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances. TEMIC TELEFUNKEN microelectronic GmbH semiconductor division has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents. 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively 2 . Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency ( EPA) in the USA 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C ( transitional substances ) respectively. TEMIC can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.
We reserve the right to make changes to improve technical design and may do so without further notice. Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use TEMIC products for any unintended or unauthorized application, the buyer shall indemnify TEMIC against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use. TEMIC TELEFUNKEN microelectronic GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Telephone: 49 ( 0 ) 7131 67 2831, Fax number: 49 ( 0 ) 7131 67 2423
TELEFUNKEN Semiconductors Rev. A2, 04-Nov-96
15 (15)
Preliminary Information


▲Up To Search▲   

 
Price & Availability of U2514B

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X